Coupled Generative Adversarial Networks

نویسندگان

  • Ming-Yu Liu
  • Oncel Tuzel
چکیده

We propose coupled generative adversarial network (CoGAN) for learning a joint distribution of multi-domain images. In contrast to the existing approaches, which require tuples of corresponding images in different domains in the training set, CoGAN can learn a joint distribution without any tuple of corresponding images. It can learn a joint distribution with just samples drawn from the marginal distributions. This is achieved by enforcing a weight-sharing constraint that limits the network capacity and favors a joint distribution solution over a product of marginal distributions one. We apply CoGAN to several joint distribution learning tasks, including learning a joint distribution of color and depth images, and learning a joint distribution of face images with different attributes. For each task it successfully learns the joint distribution without any tuple of corresponding images. We also demonstrate its applications to domain adaptation and image transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

CatGAN: Coupled Adversarial Transfer for Domain Generation

This paper introduces a Coupled adversarial transfer GAN (CatGAN), an efficient solution to domain alignment. The basic principles of CatGAN focus on the domain generation strategy for adaptation which is motivated by the generative adversarial net (GAN) and the adversarial discriminative domain adaptation (ADDA). CatGAN is structured by shallow multilayer perceptrons (MLPs) for adversarial dom...

متن کامل

Gradient descent GAN optimization is locally stable

REFERENCES 1. H. K Khalil. Non-linear Systems. Prentice-Hall, New Jersey, 1996. 2. L. Metz, et al., Unrolled generative adversarial networks. (ICLR 2017) 3. M. Heusel et al., GANs trained by a TTUR converge to a local Nash equilibrium (NIPS 2017) 4. I. J. Goodfellow et al., Generative Adversarial Networks (NIPS 2014) An increasingly popular class of generative models — models that “understand” ...

متن کامل

3D Medical Image Synthesis using Generative Adversarial Networks

In this work we propose an architecture for 3D medical image synthesis based on Generative Adversarial Networks. ACM Reference format: Irina Sánchez and Verónica Vilaplana. 2017. 3D Medical Image Synthesis using Generative Adversarial Networks. In Proceedings of womENcourage 2017, Barcelona, Spain, September 2017, 1 pages.

متن کامل

SSGAN: Secure Steganography Based on Generative Adversarial Networks

In this paper, a novel strategy of Secure Steganograpy based on Generative Adversarial Networks is proposed to generate suitable and secure covers for steganography. The proposed architecture has one generative network, and two discriminative networks. The generative network mainly evaluates the visual quality of the generated images for steganography, and the discriminative networks are utiliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016